Whys, Whats and Hows

of

Unit Testing

1960’s

NASA - Project Mercury

Objectives
* Getahuman into outer space.

* Learn if humans could function in space.

* Could we get human and spacecraft back safely?

NASA Reduces Risk - Test Early - Test Often

Unit Testing Was Born

'RAMSEY

Typically
e Part of the SDLC

* Testing smallest parts of an application
(Methods, Functions)

* Assertion (Validation) of proper operation
(including exception handling)

Traditional Testing Approach

Manual Testing Here
Ad Hoc / Test Everything

Typlca”y an Aﬂerthought Integration Testing
Unidentified Ownership

L.) Unit
Minimal/Non-Existent
Testing is QA’s Job

Revisiting the Idea of Testing
/KA Learn more about METS

METSTesting.com
METS Physical Test Grid 2%

Medium Low

Manual + Automated
METS / Critical / High / Medium / Low

Learnmg Here Integration Testing
Environment Validation / Automated / Tools

Strategic Testing Earlier

Built by Development

Unit Testing

Links

mmmmm

3 Simple Tests

Foundational Testing Concepts

Positive Test
A test that verifies expected, valid results with no exceptions.
coO-1 0 1 2 3 4 5 6 7 8 9 10 11 O

Positive

Foundational Testing Concepts

Negative Test
A test that verifies expected, invalid results and exceptions.
coO-10 1 2 3 4 5 6 7 8 9 10 11 ©CO

Negative Positive Negative

Foundational Testing Concepts

Boundary Test
A test that verifies expected, valid and invalid results at transition points.

Boundary Boundary

cO-10 1 2 3 4 5 6 7 8 9 10 1100

Negative Positive Negative

Foundational Testing Concepts

Positive Test
A test that verifies expected, valid results with no exceptions.
coO-1 0 1 2 3 4 5 6 7 8 9 10 11 O

Positive

Negative Test
A test that verifies expected, invalid results and exceptions.
coO-10 1 2 3 4 5 6 7 8 9 10 11 ©CO

Negative Positive Negative

Boundary Test
A test that verifies expected, valid and invalid results at transition points.

Boundary Boundary

cO-10 1 2 3 4 5 6 7 8 9 10 1100

Negative Positive Negative

Unit Test

Code Examples

Sample Method

Add()

Class providing simple addition functionality
class Adder

Method adding two numbers and returning result.

Throw exception for numbers < @ and > 10

def add(first_num, second_num)
result = first_num + second_num
raise UnderLimitResultException if result < @
raise OverLimitResultException if result > 10
result

end

end

add() method with two inputs,
first_num and second_num

add() sums inputs and stores value in result.
result must be between 0 and 10.

add() method throws exception if result
falls outside O - 10 range.

Unit Test Example
%f{ositive Test
A test that verifies expected, valid results with no exceptions.

co-10 1 2 3 4 5 6 7 8 9 10 11 CO

Positive

Test Data

D : 3 4 7

A Positive test of Add method.

it 'Test Positive Returns Expected Sum' do
expect(Adder.new.add(3,4)).to eq(7)
end

TRAMSEY

Unlt Test Example

’ Negative Test
A test that verifies expected, invalid results and exceptions.

coO-10 1 2 3 4 5 6 7 8 9 1o 1100

Negative Positive Negative
Test Data

UnderLimitResultException

A Negative exception test of Add method.
it 'Test Negative Result Under @ Throws UnderLimitResultException' do

expect { Adder.new.add(4,-8) }.to raise_error(UnderLimitResultException)
end

[TRAMSEY

. Unit Test Example

A test that verifies expected, invalid results and exceptions.

coO-10 1 2 3 4 5 6 7 8 9 1o 1100

Negative Positive Negative
Test Data
. 2 4 8 OverlLimitResultException

A Negative exception test of Add method.
it 'Test Negative Result Over 10 Throws OverLimitResultException' do

expect { Adder.new.add(4,8) }.to raise_error(OverLimitResultException)
end

TRAMSEY

Unit Test Example

Boundary Test
A test that verifies expected, valid and invalid results at transition points.
Boundary Boundary
coO-1 0 1 2 3 4 5 6 7 8 9 10 11 ©CO
Negative Positive Negative

Test Data

. 1 0 UnderLimitResultException

Boundary test of Add method.

it 'Test Negative Result Under @ Throws UnderLimitResultException' do
expect { Adder.new.add(@,-1) }.to raise_error(UnderLimitResultException)

end

[TRAMSEY

Unit Test Example

~ Boundary Test
A test that verifies expected, valid and invalid results at transition points.
Boundary Boundary
coO-1 0 1 2 3 4 5 6 7 8 9 1lo 11 ©CO
Negative Positive Negative
Test Data
D 0 0 0

Boundary test of Add method.

it 'Test Positive Normal Addition' do
expect(Adder.new.add(0,0)).to eq(0)

end

[TRAMSEY

Unit Test Example

~ Boundary Test
A test that verifies expected, valid and invalid results at transition points.
Boundary Boundary
coO-1 0 1 2 3 4 5 6 7 8 9 1lo 11 ©CO
Negative Positive Negative
Test Data
P : 9 1 10

Boundary test of Add method.

it 'Test Positive Normal Addition' do
expect (Adder.new.add(9,1)).to eq(10)

end

Unit Test Example

~ Boundary Test
A test that verifies expected, valid and invalid results at transition points.
Boundary Boundary
coO-1 0 1 2 3 4 5 6 7 8 9 1lo 11 ©CO
Negative Positive Negative
Test Data

4 9 2 OverLimitResultException

Boundary test of Add method.

it 'Test Negative Result Over 10 Throws OverLimitResultException' do
expect { Adder.new.add(9,2) }.to raise_error(OverLimitResultException)

end

Unit Testing

Advanced Concepts

Triangulation

%{riangulaﬁon Test
A test that verifies return result is not hard coded.

Test Data

1 3 4 7
2 3 5 8

A Triangulation test of Add method.

it 'Test Positive Returns Expected Sum' do
expect(Adder.new.add(first_num,second_num)).to eq(expected_result)

end

SOLUT ONS

FIRAMSEY

I\/Ieasurmg I\/Iaturlty

Typical steps of software maturity

Level 1 Level 2 Level 3
Initial Repeatable Defined

* Based upon the Capability Maturity Model

TRAMSEY

S O L U T O N S

Unit Test - Maturity Model
Unit Test Level

Details
Unaware of unit testing concepts or missing fundamental skills to develop unit test.

Level 0 - Unaware
fal ™ A belief that not enough time is available for unit testing or that it would not bring benefit to the specific work at hand.
g Z |Level 1-Ignored
X Experimentation of basic unit test concepts, typically positive scenarios. Missing strategy as to coverage areas. Typically used
Level 2 - Experimental by creator of test and not others within the organization. Likely not maintained for reusage.
Intentional effort to build some unit test in places throughout the develop lifecycle. May not represent test scenarios
Level 3 - Intentional outside positive (happy path) testing.

Intentional effort to build positive and negative unit test throughout the development lifecycle. Understanding of testing
Level 4 - Positive/Negative Test principals beyond positive (Happy Path) testing techniques.

Specific test with different input and expected results than the positive test to ensure no hard coded return results.

Level 2
Repeatable

Level 5 - Positive/Triangulation Test

Intentional effort to build effective unit test leveraging appropriate testing principals such as Positive, Negative and
Level 6 - Positive/Negative/Boundary Test | g, dary testing. Effective communication channels in place between development and QA.

Mocks and Stubs in place to replicate dependent functionality.

Level 7 - Mocks and Stubs

Level 3
Defined

Final Thoughts

Greg Paskal In

| would enjoy hearing
how you’re using the
teachings from this
presentation

Physical Test Grid X

Critical High

Medium

Low

Loading completes in a

Page completes 10ading rozonable amount of time

[Page loading consistent
between browser versions

Page loading time
reasonable under load

Graphics, text and other
elements seem tobe in |Page has logical flow

Color contrast issues

[Graphics completed
loading within same time
frame

Graphics loading
completely

Consistently loading every
time

color

Scaling, cropping or image

ig! tifact (distorted)
quality problems image quality

Graphics

C
rendering at various bit
depths

N safe color
pallet used

Graphic rollover state
providing correct transition
ilusion

Rollover graphics
displaying correctly

[Preloaders working
correctly for quick screen
redraw

| Graphical text within [Correctly spelled text within
graphic is legible

Dropdown menu contains
Dropdown menus are. all desired options
functional

[Submitted form contains
dropdown menu
selection(s)

Dropdown items are
spelled correctly

Radio button effect, tuming
of related radio buttons is

Radio Butions are =

functional

Submitted form contains
radio button selection

Radio buttons are spelled
ot

[Selection of multiple.
functional

[Submitted form contains
heckbox selection(s)

|checkboxes s possible
i is spelled
correct!

[Text field and boxes have
correctly spelled default
Text fields and boxes are [text

Text fields allow enough
room for a typical data
entry

functional

[Submitted form contains
text field and text box
information

Button submiting or
resetting form correct!

Buttons are functional
. Buttons are spelled
correctt

Hitting Return/Enter

Forms submitting correctly | 0 "

Data from submitted form

Form data being received (%26 1o S T Te

Form validation working
corectly

Hyperlinks going to correct
Hyperlinks working

Link o page is not an error
page

Hyperlinks spelled correctly|

Image links going to correct]

image links working. ALooe s

[Email links launching email

Email links working B

[Email link addressing mail
client correct)

il links going to correct
ient

Need a better Manual and Automated

Test Strategy? Learn more about Greg’s

Minimal Essential Testing Strategy.
METSTesting.com

GREG PASK
TEST AUTOMATION

in the
REAL WORLD

Interested in Test Automation? Greg

shares from 30 years of experience in

“Test Automation in the Real World”.
RealWorldTestAutomation.com

